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Abstract
Purpose: Quantitative MRI techniques such as MR fingerprinting (MRF) promise
more objective and comparable measurements of tissue properties at the
point-of-care than weighted imaging. However, few direct cross-modal comparisons
of MRF’s repeatability and reproducibility versus weighted acquisitions have been
performed. This work proposes a novel fully automated pipeline for quantitatively
comparing cross-modal imaging performance in vivo via atlas-based sampling.
Methods: We acquire whole-brain 3D-MRF, turbo spin echo, and MPRAGE
sequences three times each on two scanners across 10 subjects, for a total of 60 mul-
timodal datasets. The proposed automated registration and analysis pipeline uses
linear and nonlinear registration to align all qualitative and quantitative DICOM
stacks to Montreal Neurological Institute (MNI) 152 space, then samples each
dataset’s native space through transformation inversion to compare performance
within atlas regions across subjects, scanners, and repetitions.
Results: Voxel values within MRF-derived maps were found to be more repeat-
able (σT1 = 1.90, σT2 = 3.20) across sessions than vendor-reconstructed MPRAGE
(σT1w = 6.04) or turbo spin echo (σT2w = 5.66) images. Additionally, MRF was found
to be more reproducible across scanners (σT1 = 2.21, σT2 = 3.89) than either quali-
tative modality (σT1w = 7.84, σT2w = 7.76). Notably, differences between repeatability
and reproducibility of in vivo MRF were insignificant, unlike the weighted images.
Conclusion: MRF data from many sessions and scanners can potentially be treated
as a single dataset for harmonized analysis or longitudinal comparisons without the
additional regularization steps needed for qualitative modalities.
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1 INTRODUCTION

Whereas most clinical MR applications still regularly
employ qualitative image generation as the default tech-
nique, research studies are consistently demonstrating
areas where quantitative MR techniques may exhibit a
direct clinical benefit over qualitative alternatives.1 One
quantitative technique is MR fingerprinting (MRF), a US
Food and Drug Administration–approved MRI method
that performs simultaneous measurements of various tis-
sue properties, including T1 and T2 relaxation times.2
Quantitative analysis of MRF maps has been beneficial in
better understanding and tracking of healthy function, dis-
ease diagnosis, and disease progression in areas such as the
brain,3–7 heart,8,9 liver,10–12 prostate,13 and kidney.14,15

However, before any widespread clinical adoption,
quantitative methods such as MRF need to offer signif-
icant, provable advantages over established, qualitative
MRI scans. In this study, we establish reproducibility and
repeatability within MRF techniques. We then demon-
strate how reproducibility and repeatability are improved
in MRF compared to current clinical imaging techniques,
bringing more sensitive diagnostic tools to current imaging
suites. Additionally, throughout this study, we determine
techniques for creating measurable benchmarks of success
and ensuring consistent techniques for future convenience
and reliability within the world of MRF imaging, factors
that are not consistently considered in qualitative imaging.

Whereas qualitative weighted imaging techniques
regulate noise characteristics,16 spatial accuracy,17 and
signal uniformity,18 the resultant images are not required
to reproduce exact contrasts for different scanners and
sites with the same input parameters. These weighted
images do not have to be comparable directly to previously
acquired images and thus cannot be reliably considered
quantifiable MR images.19 On the contrary, in prior phan-
tom20 and in vivo21–26 studies, MRF images were able
to quantify T1 and T2 values reliably and reproducibly.
Some reproducibility studies used 2D acquisitions22 with
partial brain coverage and manually drawn regions of
interest (ROIs)21; others used 3D MRF, where the coeffi-
cient of variation, intraclass correlation, mean gray matter
(GM) and white matter (WM) T1 and T2 values,23 cor-
tical thickness, and subcortical region volumes25 were
studied. However, there are few cross-modal comparisons
of MRF (or other quantitative MRI techniques) against
conventional weighted imaging in terms of repeatability
and reproducibility. Compared to the larger body of MRF
work, only a few previous studies specifically compared
the repeatability of MRF24 or reproducibility of T1 map-
ping27 against conventional T1-weighted (T1w) imaging.
None of these prior studies include the entire imaging and
analysis chain as a composite source of variability.

The goal of this study was to present a fully integrated
acquisition and online reconstruction and analysis frame-
work for 3D MRF that forms an automated, reproducible,
traceable pipeline. We then evaluate both the repeatability
and reproducibility of 3D MRF compared to clinically stan-
dard T1w and T2w imaging using this pipeline. To establish
repeatability and reproducibility, previously determined
definitions of traceability and uncertainty28 are imbued
with specific meanings within specific parameters of MRF.
We compared the mean values of different Montreal Neu-
rological Institute (MNI) brain atlas regions to examine the
in vivo repeatability and reproducibility of MRF and con-
ventional weighted imaging. We used a fully automated
registration pipeline designed to maximize cross-modality
spatial coherence and to establish specific benchmarks for
repeatability and reproducibility, using automated analy-
sis. We also ensured that all analysis techniques used are
available in version-controlled and traceable venues.

2 METHODS

2.1 Study design

Ten healthy volunteers (36.8± 14.9 years; five men, five
women) gave written consent and were scanned in this
study according to the applicable institutional review
board-approved protocol. Volunteers were imaged over
two sessions occurring on different days, with one session
each on two 3 T scanners running different software ver-
sions (Magnetom Vida, VA20 and VA31, Siemens Health-
care, Erlangen, Germany).

All imaging was performed by using a 20-channel head
coil.

This study aims to compare the intrasession, interses-
sion, and interscanner regional reproducibility between
MRF and two qualitative acquisition approaches. Each
scan session consisted of three sets of acquisitions, with
each set consisting of three series of images: 3D-MRF
SSFP with a B1 mapping prescan, product 3D-MPRAGE,
and product multislice 2D turbo spin echo (TSE). All were
acquired with a FOV of 250× 250× 150 mm3 and a spatial
resolution of 1× 1× 2.5 mm3.

The first set, referred to as the “original” set on each
scanner, served as an initial baseline for each sequence.
Immediately following the “original” set, a “repetition”
set was acquired, consisting of the same three sequences
in the same order. This “repetition” set is intended to serve
as the intrasession test–retest because the subject was left
in the scanner and the imaging FOV was copied directly
from the “original.” After completion of all “repetition”
images, subjects were asked to leave the scanner, stand
up, walk around, and then asked to reenter the scanner. A
new localizer was acquired to establish the subject’s new
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position, while also forcing a recalibration of the scan-
ner’s acquisition system and reshimming of the B0 and B1
fields. Finally, a “reposition” set was acquired to serve as
an intersession test–retest. Subjects were asked to return
within 7 days to repeat the entire protocol on the second
scanner. The scanner order was randomized between sub-
jects to minimize the potential for scanner-specific effects
on the results.

2.2 Sequences

The MRF data was acquired first in every set for all the sub-
jects and sessions. Before acquiring MRF data, to minimize
simulation mismatch errors that result from B1+ inhomo-
geneities, the RF transmit field (B1+) was mapped for later
use during pattern matching.

The MRF sequence is an inversion recovery
SSFP–based sequence initiated with an adiabatic inver-
sion pulse, followed by the acquisition of a series of 960
time points. This is then repeated for each partition in a
stack-of-spirals 3D approach with an acceleration factor
of 2 in the slice direction.6 An extra 2 s pause was added
between each partition to allow for longitudinal relax-
ation. A 2π dephasing moment in the slice direction was
used within each TR.29 A fixed TR of 10.5 ms and a fixed
TE of 1.7 ms were used for every time point. The acqui-
sition time for each partition was 10.1 s for MRF with a
total acquisition time of 362.4 s for all partitions. A figure
showing the flip angle pattern used in this study, as well
as a human-readable javascript object notation (JSON)
specification of all relevant MRF pulse parameters, is
available in the Supporting Information S1. Variable den-
sity spiral trajectory with 48 spiral arms rotated by 7.5◦
between successive time points was designed for a FOV
of 250× 250× 150 mm and a matrix size of 256× 256× 60.
The trajectories were measured on scanner one using the
approach described by Duyn et al.,30 and the resulting tra-
jectory was used in the nonuniform fast Fourier transform
(NUFFT) gridding operator regardless of scanner.

Next, a product 3D-MPRAGE sequence was acquired
to represent a T1-weighted contrast and to be the struc-
tural baseline image within the intrasession, intersession,
and interscanner registration pipelines. The product
3D-MPRAGE sequence was used with the following
acquisition parameters: TR= 2100 ms, TE= 2.59 ms,
TI= 900 ms, and TA= 4 m: 53 s.

Finally, a product multislice 2D-TSE acquisition was
acquired to represent a T2w contrast with the following
acquisition parameters: TR= 10 620 ms, TE= 93 ms, turbo
factor= 17, TA= 3 m: 2 s. Product MPRAGE and TSE
sequences had the same FOV, matrix size, and position
as the 3DMRF scan. Product MPRAGE and TSE scan

parameters were fixed across all subjects and selected with
the assistance of a research technologist to match standard
clinical contrasts. Vendor-default prescan normalization
was left enabled for all weighted imaging sequences to
match the settings used in clinical practice at our institu-
tion, and to avoid including biases in our data that are well
accounted for by standardized techniques with existing
regulatory approval.

2.3 Reconstruction

Reconstruction of the product sequences, as well as
the B1+ mapping sequence, was performed by the
standard pipeline provided by the scanner/vendor.
Header-complete digital imaging and communication in
medicine (DICOM) standard images were exported and
saved within directories specific to each subject, scanner,
and acquisition set.

3D-MRF data was reconstructed online via a custom
Gadgetron Kubernetes cluster using the framework for
image reconstruction environment (FIRE) interface pro-
totype.31 All data were also converted to ISMRM raw data
(ISMRM-RD)32 format for future analysis or retrospective
reconstruction. The SNR-constrained realtime compres-
sion provided by the FIRE prototype was disabled used
to avoid potential differences in compression implemen-
tation across software platforms—instead, uncompressed
raw data was sent to a remote reconstruction server via
a secure shell (SSH) connection. Reconstruction was
performed within a graphics processing unit enabled
Docker container containing the precalculated MRF dic-
tionary, singular value decomposition (SVD) compression
matrix,33 and spiral density compensation function. In
order to conserve memory on the reconstruction server,
time-domain SVD compression and 2D nonuniform fast
Fourier transform (NUFFT) were performed on each
partition on a rolling basis as raw data was received.
Once all partition data has been uploaded at the end
of the scan, a through-partition 1D fast Fourier trans-
form was applied to generate the 3D SVD-space images.
Finally, the resulting SVD images and the associated B1+
maps were then pattern-matched based on maximum
inner product to obtain T1 and T2 maps.21 The result-
ing voxel wise quantitative maps were then returned to
the scanner via the SSH tunnel and stored as header
complete DICOM images by the FIRE prototype interface.
A figure detailing the online reconstruction pipeline used
is available in the Supporting Information Figure S2.

2.4 Post-processing
The post-processing pipeline inputs were the DICOM
image series organized in a semantic hierarchical file
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scheme. All post-processing performed on this file hier-
archy was performed by an automated pipeline based on
a version-controlled Docker container to ensure identical
settings, and procedures were applied to all data. Before
the post-processing pipeline could be run, DICOM images
were converted to nuroimaging informatics technology
initiative (NIfTI) files using the open-source dcm2niix
package (v1.0.20220720),34 with consistent naming and
versioning enforced by a subject-specific file map stored
within each subject’s DICOM repository. The resulting
unified NIfTI directory structure was then processed by
a Python-based image registration and statistical analysis
pipeline utilizing the NiBabel35 NIfTI management pack-
age and NiPype’s36 NIfTI pipelining system and FMRIB
software library (FSL, 6.0)37 interface extension.

Acquired images went through post-processing to
establish a shared registration space among all image
series for a specific subject, across all sets and scanners.
The first step of the post-processing pipeline is the genera-
tion of synthetic MPRAGE and TSE contrast images for all
MRF image sets as a basis for intermodality linear registra-
tions. Whereas there are existing approaches to generating
synthetic contrasts from MRF time series images using
convolutional networks, this work requires pixel-precise
coregistration that can be corrupted by generative
approaches, such as U-NETs. Instead, synthetic contrasts
were generated using a simple TensorFlow (2.11.0)38

voxelwise regression network trained on MRF T1/T2
parameter maps as inputs, versus registered MPRAGE and
TSE contrasts as outputs, to provide MRF-space synthetic
contrasts with adequate similarity to each qualitative
approach such that performant registration is possible
within FSL. For network training, an initial registration
was performed between MPRAGE, TSE, and T1/T2 map
pairs; quantitative maps were manually masked to avoid
the influence of free-space spiral artifacts on the network.
All data from three prior volunteers were linearized into
independent, two-input-one-output voxel datasets for
each conventional contrast. From this linearized voxel
table, data were split into training (50%) and test (50%)
sets, and a dense two-layer regression model with a data
normalizer was trained using the Adam optimizer with a
mean absolute error loss function. The resulting network
functions similarly to a color map, with unique com-
binations of T1 and T2 values corresponding to unique
grayscale values based on the qualitative images used for
training. This simple nonconvolutional model was then
saved and used for voxelwise prediction of synthetic image
values from each volunteer’s T1/T2 map pairs.

Following synthetic image generation, all imaging sets
from each subject were linearly registered together using
FMRIB’s linear image registration tool.39,40 Within each
image set, the product TSE images were first registered

to the MRF-derived synthetic TSE images, resulting in
a transformation matrix TSE to MRF space. Then, the
MRF-derived synthetic MPRAGE images were registered
to the product MPRAGE images. This process yielded
two sets of linear transformation matrices, bringing all
images within each set to the shared space of the product
MPRAGE contrast.

Within each scanner, the “original” MPRAGE image
series was used as a basis to which the “repetition” and
“reposition” MPRAGE image series were linearly regis-
tered. As a result, linear transformations were known for
all images from a single scanner to a single image space
as defined by the “original” MPRAGE image series. This
process was repeated for each scanner, and each scanner’s
respective “original” MPRAGE image series was linearly
registered to the other, yielding a full chain of invertible
transformation matrices for all image series to a single
shared space. Finally, a single nonlinear warp field was cal-
culated via FMRIB’s Nonlinear Image Registration Tool to
establish a transformation from the “first” scanner’s “orig-
inal” MPRAGE series to MNI-152-2 mm template space.

By inverting and combining all linear and nonlin-
ear transformations throughout the registration chain,
MNI-152 space atlases, ROIs, or other labels can be pro-
jected into each source image series. The registration flow
is further detailed in Figure 1.

All raw data, DICOMs, NIfTI-converted images, lin-
ear and nonlinear transformation matrices, warped label
maps, and atlas-label voxel dictionaries were uploaded to
Azure Blob storage (Version 2022-11-02, Microsoft, Red-
mond, WA, USA) for validation and retrospective analysis.
Access via a Python API is available under a data-sharing
agreement to encourage further investigation and statisti-
cal analysis of the data.

2.5 Statistical analysis

Inverse transformations from the registration were used
to generate warped atlas label maps in the original
image spaces for each subject/scanner/set/series combi-
nation. Eighteen well-defined, homogenous regions from
the Harvard–Oxford subcortical atlas were selected for
regional comparison. For each tissue compartment in
every image series, the mean, median, and SD of the voxel
values were calculated by using the warped series-specific
label maps as a voxel mask and generating arrays of
all constituent voxel values from each compartment. No
post-scan normalization was applied outside of the ven-
dor’s online reconstruction—all regional statistics were
generated from DICOM values in exported datasets.

The repeatability of the intrasession, intersession, and
interscanner cases was assessed via comparison of the
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F I G U R E 1 Seven-parameter registration via FLIRT was used within subjects. For each imaging set, TSE images were registered to
MRF maps via synthetic TSE. MRF was then registered to MPRAGE via synthetic MPRAGE. MPRAGE images from each imaging set and
scanner were then registered to the “original” MPRAGE series, which was then nonlinearly warped via FNIRT to MNI-152 space. The linear
and nonlinear transformations saved for each scanner/set/series combination were then inverted and used to generate set-specific atlas label
maps. These maps were used to sample and save voxel buffers for all atlas regions. FLIRT, first linear registration; FNIRT, first nonlinear
registration; MNI, Montreal Neurological Institute; MRF, MR fingerprinting; TSE, turbo spin echo.

mean values of registered regions across paired samples
from the same subject. The unweighted mean and SD of
the differences in mean value across all subject and regions
is reported for each modality and case. Additionally,
because regions have vastly different volumes, a weighted
mean and weighted SD41 for the performance of each
modality across subjects and regions was performed. The
resulting bias and agreement metrics were then compared
to establish the relative stability of each imaging approach.

The resulting aggregate data from each region and
image type were then used to generate Bland–Altman
plots. The plots compared the stability of regional mean
values for all qualitative and quantitative image series,
across all subjects in the intrasession, intersession, and
interscanner cases.

3 RESULTS

Sample MRF maps, resulting synthetic images, and the
associated MPRAGE (T1w) and TSE (T2w) images are

shown in Figure 2 for a representative subject. Other
subjects’ sample maps are available in the Supporting
Information Figures S3-S12. Maps visualizing automated
registration pipeline performance for the same representa-
tive subject across sessions and scanners are illustrated in
Figure 3. Similar maps for all the subjects are available in
the Supporting Information Figures S13-S22. Bulk regis-
tration errors were not seen across any of the image series,
and no manual intervention or registration correction was
performed outside of the automated pipeline.

Atlas registration performance maps were generated
for each subject to demonstrate the performance of the
FNIRT nonlinear registration between MNI-152-2 mm
space and the first scanner’s original MPRAGE image
series. The results for the same representative subject and
the other subjects are in Figure 4 and the Supporting Infor-
mation S23-S32, respectively. The aggregated mean T1 and
T2 values and their respective SDs derived from 3D MRF
for the examined MNI-152 atlas regions across all ses-
sions on both scanners for all subjects are presented in
Table 1. Bland–Altman plots were prepared comparing the
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F I G U R E 2 Synthetic MPRAGE (T1w)
and TSE (T2w) images generated from MRF
maps were used as the input to the
registration pipeline. Both synthetic
qualitative contrasts showed similar
intraregional contrast compared to the
MPRAGE and TSE imaging acquired. T1W,
T1-weighted; T2W, T2-weighted.

F I G U R E 3 The results of canny edge detection (σ= 1) applied to the first scanner’s original MPRAGE series projected over the first
scanner’s original T1 map (represented here in grayscale) and TSE series and applied to the second scanners reposition MPRAGE, T1 map,
and TSE series.

repeatability of 3D-MRF, TSE, and MPRAGE acquisitions
using regional means compared between immediate rep-
etitions (Figure 5) and subject repositions on the same
scanner (Figure 6).

Reproducibility was tested by comparing all combi-
nations of subjects, scanners, and sets (Figure 7). Table 2
summarizes the mean percent differences and SDs of
3D-MRF, TSE, and MPRAGE across the intrasession,

intersession, and interscanner cases. In all cases except
TSE, smaller regions have higher variability and skew the
aggregate reproducibility unproportionally. When the size
of each region is included in the estimation of the weighted
SD41 for the overall repeatability and reproducibility
(Table 3), the performance of T1, T2, and MPRAGE bet-
ter reflect the visual and histogrammatic similarity of the
regions.
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F I G U R E 4 The atlas label maps from
MNI space were inversely warped and
eroded to remove mislabeling artifacts
introduced by nonlinear interpolation of
integer label values. The resulting atlas
region overlays were colorized according to
the legend used in the subsequent Bland
Altman plots.

T A B L E 1 Fingerprinting-derived T1 and T2 values of MNI-152 regions.

Tissue compartment T1mean (ms) 𝛔T1 (ms) T2mean (ms) 𝛔T2 (ms)

Cerebral white matter 914.1 40.5 (4.4%) 45.9 2.3 (5.0%)

Cerebral cortex 1889.4 129.5 (6.9%) 124.6 15.8 (12.6%)

Lateral ventricles 4341.4 447.9 (10.3%) 467.0 26.7 (5.7%)

Thalamus 1175.5 73.7 (6.3%) 49.6 3.7 (7.5%)

Caudate 1338.4 66.1 (4.9%) 51.5 6.0 (11.6%)

Putamen 1234.0 53.6 (4.3%) 45.0 4.6 (10.1%)

Pallidum 938.7 53.2 (5.7%) 30.3 3.3 (11.0%)

Hippocampus 1621.8 93.1 (5.7%) 76.0 9.9 (13.0%)

Amygdala 1463.4 55.2 (3.8%) 62.5 3.6 (5.7%)

Note: Measured mean T1 and T2 values and associated SDs in the selected tissue compartments, derived from 3D MRF maps across all sessions on both
scanners for all subjects.
Abbreviations: MNI, Montreal Neurological Institute; MRF, MR fingerprinting.

4 DISCUSSION

This study aimed to provide an online MRF reconstruc-
tion and analysis framework while also investigating the
reproducibility of MRF and conventional weighted imag-
ing. From the start, we developed a traceable and online
3DMRF reconstruction that outputs DICOMs directly to
the scanner. We then evaluated our fully automatic online
3D MRF reconstruction, as well as our cross-modality

registration and analysis pipeline, to determine whether
in vivo 3D MRF repeatability and reproducibility meets or
exceeds that of vendor product MPRAGE and TSE.

The brains of healthy volunteers were imaged using
MPRAGE, TSE, and MRF protocols across multiple sets
following varying perturbations to the subject, repeated
on different scanners on multiple days. The consistent
volume-weighted biases and SDs in Table 3 indicate
that the T1 and T2 values generated by in vivo 3D-MRF
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F I G U R E 5 The repeatability between the “original” and “repetition” sets on each scanner was compared for all subjects. This
represents a same-session test–retest on the same scanner hardware because the subject remained in the bore, and the scanner has not
performed adjustments between acquisitions. The gray and green dashed lines show the confidence intervals for the mean and weighted (by
region volume) mean cases.

were repeatable whether a scan is repeated immediately
(T1: 0.80%± 2.34%, T2: 2.32%± 4.34%) or with a reposition
of the subject on the same scanner (T1: 0.30%± 1.90%, T2:
2.07%± 3.20%), and reproducible on a different scanner on
a different day (T1: −1.02%± 2.21%, T2: −3.24%± 3.89%).
Most importantly, regardless of scanner and session, the
intrasubject variations of both T1 and T2 were found to be
lower than the variations within T1 and T2 regions across
the sampled population shown in Table 1.

Considering the observed negligible differences
between intrascanner and interscanner variations, the
apparent reproducibility of in vivo 3D-MRF offers mul-
tiple opportunities: data from many sessions, scanners,
and sites can potentially be treated as a single dataset for
harmonized analysis. Similarly, structural or statistical

intrasubject comparisons are valid across scanners or
sessions for the proposed 3D-MRF pipeline without any
additional data regularization steps. The same is not true of
the baseline product imaging methods that we tested here.

Because the direct output of MRF is an actual quantifi-
able measurement, additional criteria and opportunities in
terms of repeatability and reproducibility need to be sat-
isfied, which might not apply to conventional weighted
imaging at the scanner output level.

The reproducibility of 3D MRF was investigated in
various common clinical situations in a traceable frame-
work via bounds of uncertainty that we set and explored
through cortical and subcortical regional mean values.
Defining and monitoring traceability and uncertainty
with structured boundaries will be useful for careful



DUPUIS et al. 9

F I G U R E 6 The repeatability between the “original” and “reposition” sets on each scanner were compared for all subjects. Between
acquisitions, the subject was asked to leave the bore and walk around before being repositioned inside, triggering a reshimming of the system
and frequency adjustments. This represents a cross-session test–retest on the same scanner hardware. The gray and green dashed lines show
the confidence intervals for the mean and weighted (by region size) mean cases.

integration into clinical settings and to further ensure
physician confidence.28

4.1 Traceability

The data analysis for this study recognized the impor-
tance of traceable research documenting all the stages of a
study from data acquisition to presentation of the results.
This structured record becomes functionally important as
a foundation for studies involving multiple scanners, sites,
and even across vendors. In our framework, we defined
and ensured traceability at the data acquisition, recon-
struction, and post-processing steps. After the fully inte-
grated acquisition and automated online reconstruction,

the DICOM images are fed back to the MR console via
the FIRE interface prototype. This allows MR radiologists
and technologists to interact in real time with MRF quan-
titative maps in their preferred environments (PACS or
MR console) in the vendor coordinate system, with full
DICOM capability.

The next step in the traceability chain was the analy-
sis pipeline for automated post-processing of the DICOM
images. The cloud-based and version-controlled registra-
tion and regional analysis pipeline can support future
applications and more complex analyzes that use MRF
in longitudinal or multi-center large scale studies. This
scale of traceability for every step ensures that compar-
isons across different MRF variants, sites, scanners, and
even vendors are possible and valid. Due to the pipeline’s
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F I G U R E 7 The reproducibility across all combinations of subjects, scanners, and sets was compared. The data included is the full
matrix of nine combinations of original, repetition, and reposition sets across both scanners. The gray and green dashed lines show the
confidence intervals for the mean and weighted (by region size) mean cases.

flexible infrastructure, other tools or software packages
can also be integrated at any level. In prior studies, the use
of offline reconstructions and manual analysis pipelines
often impeded the use of cross-dataset registration and
statistical tools. This resultant loss of significant portions
of the metadata present in clinical sequences such as
position, scale, and subject identifiers made it difficult
for cross-modal comparisons. Holding the history of the
pipeline accountable could further increase the confidence
in MRF and help usher in its adoption in clinical settings.

4.2 Uncertainty

After the traceability chain was established and docu-
mented for in vivo quantitative mapping with MRF, the
next step evaluated the associated uncertainty of the
quantitative maps.

Quantitative tissue properties and imaging biomark-
ers are only meaningful when measurement uncertainties
are provided. The goal of the uncertainty evaluation was
not to define a measure of error for the quantitative maps
but rather to provide guidance for the decision-making
process based on the maps. Like UK Biobank,42 large scale
studies that also include reproducible MRF quantitative
maps can be enabled to define population-based nor-
mative tissue property values with known uncertainties.
Eventually, decisions can be made about the individual
patients directly at the MR console with confidence, such
as manually or automatically flagging significant findings
with respect to a population reference (obtained from
large scale studies) or a past measurement of the same
subject (longitudinal).

The MRF reconstruction pipeline inputted the B1
maps acquired and reconstructed with the standard ven-
dor sequence and corrected for the B1 inhomogeneity by
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T A B L E 2 Repeatability and reproducibility performance by
modality, unweighted.

Intrascanner Interscanner
Mean± SD
(bias±
agreement)

Same-
session

Cross-
session

Cross-
session

T1 (%) 0.98± 4.36 −0.10± 4.51 −1.07± 4.61

T2 (%) 1.24± 7.48 0.67± 6.81 −0.17± 7.93

MPRAGE (%) 1.64± 10.80 −0.97± 10.35 −0.23± 11.18

TSE (%) −0.17± 6.20 −1.68± 6.78 −1.26± 8.52

Note: Summary of mean value intrascanner repeatability and interscanner
reproducibility for selected MNI-152 regions between conventional
MPRAGE and TSE imaging versus 3D-MRF. Standard deviation, the
primary criteria for each method’s repeatability, is shown in bold.
Abbreviation: TSE, turbo-spin-echo.

T A B L E 3 Repeatability and reproducibility performance by
modality, weighted by region sizes.

Intrascanner InterscannerWeighted
mean±
weighted SD
(bias ±
agreement)

Same-
session

Cross-
session

Cross-
session

T1 (%) 0.80± 2.34 0.30± 1.90 −1.02± 2.21

T2 (%) 2.32± 4.34 2.07± 3.20 −3.24± 3.89

MPRAGE (%) −0.03± 5.63 −2.49± 6.04 −1.32± 7.84

TSE (%) −0.26± 5.49 −1.85± 5.66 −1.10± 7.76

Note: Summary of weighted mean value intrascanner repeatability and
interscanner reproducibility for selected MNI-152 regions between
conventional MPRAGE and TSE imaging versus 3D-MRF. Regional
differences are weighted by voxel population size on a per-set, per-subject
basis to represent the whole-brain aggregate performance of each
acquisition approach. Standard deviation, the primary criteria for each
method’s repeatability, is shown in bold.

matching each voxel’s fingerprint to the portion of the
dictionary with the voxel’s relative B1. Among the previ-
ous MRF repeatability and reproducibility studies, only
Kőzdőrfer et al. corrected for B1 inhomogeneities.21 B1
correction eliminates the bias from MRF T2 maps improv-
ing accuracy43; thus, it is expected to lower the variability
between sessions. Different scanners and software ver-
sions can have varying limits and adjustments of the
RF power and can affect the T2 contrast for weighted
imaging and MRF time series unless accounted for. MRF
data shows reduced variability compared to conventional
images and MRF’s ability to consider variable and inho-
mogeneous B1 could be a factor.

Previously, some MRF repeatability and reproducibil-
ity studies used 2D MRF21,22 rather than the volumetric 3D
acquisitions commonly used in neuroradiological clinical
practice. Besides using 2D acquisitions, manually drawn

ROIs often formed the basis for intrasession, intersession,
and interscanner comparisons of the resulting maps.21,26

These ROIs potentially introduced errors due to human
intervention in the processing pipeline, while also reduc-
ing the scalability of the study and reducing the potential
for intermodality comparisons of MRF results against clin-
ical standard contrasts provided by vendor product imple-
mentations. For these studies, 2D in vivo brain repeata-
bility was shown to be 2%–3% for T1 and 5%–8% for T2

22;
2%–3% for T1 and 3%–8% for T2.21 Reproducibility was
slightly lower for both studies: 3%–8% for T1 and 8%–14%
for T2

22; 3.4% for T1 and 8% for T2.21

Two other studies that investigated the repeatability
and reproducibility of a 3D in vivo brain MRF data with
different analyzes reported similar results.23,25 Buonincon-
tri et al. based the analysis on average GM, WM, and CSF
relaxation times and reported <2% T1 and<5% repeata-
bility, and 6% GM T1 and 10% GM T2 reproducibility.22

With automated segmentation of the same 3D MRF data
into cortical and subcortical regions, Fujita et al. reported
repeatability (cortical: T1 4% and T2 6%, subcortical: T1
1.3% and T2 5%) and reproducibility of T1 and T2 (cortical:
T1 2.2% and T2 6.7%, subcortical: T1 3.2% and T2 5.8%), as
well as cortical thickness and subcortical volumes.25

4.3 Qualitative imaging

MPRAGE and TSE are common acquisition schemes for
diagnostic MRI of the brain and are frequently used in clin-
ical practice. Both techniques are qualitative acquisitions
that are adjusted to maximize contrast between specific
tissues and normalized by proprietary vendor reconstruc-
tions; therefore, they fare not expected to have repro-
ducible intensity for certain tissues.

As a result of changes in receiver tuning, coil loading,
and image autoscaling, we expected a linear bias (mean
shift in reproducibility) would still govern any inter- and
intrasession regional variations.

The result, however, was a muddling of the underly-
ing interregional contrasts, evidenced by the low bias and
high variability within an individual session (MPRAGE:
−0.03%± 5.63%, TSE: −0.26%± 5.49%), across sessions
(MPRAGE: −2.49%± 6.04%, TSE: −1.85%± 5.66%), and
across scanners (MPRAGE: −1.32%± 7.84%, TSE: −1.10%
± 7.76%). Because MPRAGE images form the basis for
the registration approach, the comparatively lower repro-
ducibility of MPRAGE is not due to poor within-subject or
MNI registration because any registration errors that may
contribute to variability in MPRAGE image sets would
have propagated to 3D-MRF and TSE images.

Whereas in some cases the bias of the differences was
lower for qualitative modalities than the MRF-derived
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values, the SD of the differences was always higher for
qualitative modalities than MRF. Low-to-moderate bias,
especially linear bias across a measurement parameter,
can be easily corrected via calibration during standard
scanner quality assurance and maintenance procedures.
In fact, both qualitative methods assessed in this study
already benefit from post hoc calibration due to the ven-
dor applying both surface-coil intensity normalization
and noise prewhitening in the product image reconstruc-
tion pipeline. The evaluated MRF reconstruction does not
implement any form of scanner- or sequence-specific nor-
malization.

The contrast variability of the weighted images must
be interpreted by radiologists with appropriate window
and level adjustments to accommodate reading images
acquired in different sessions.

Additionally, most qualitative or quantitative
post-processing methods using raw DICOM images
could be affected by the contrast variability because the
algorithms behind the techniques rely on certain con-
trast between tissues.44 Eck et al.45 showed that many
radiomics features, extracted from TSE, are not robust
when image contrast, resolution, and acceleration fac-
tors are changed. Scanner software upgrades might cause
additional problems for longitudinal studies due to B1
variations and signal saturation.19 Reproducibility is crit-
ical for longitudinal comparisons of disease states and
for the training of direct or convolutional inference net-
works based on value-normalized large-scale datasets,
which are becoming more common. Because the MRF
quantitative maps are found to be more reproducible than
MPRAGE or TSE in common clinical scenarios, future
cross-scanner or cross-site large scale studies would be
justified in using MRF, instead of or additional to conven-
tional imaging. Automated image analysis tools, such as
FSL and FreeSurfer, can also be expanded to operate on
quantitative MRF maps.

4.4 Study limitations and future work

This study investigated the reproducibility of MRF and
conventional imaging on a pixel basis rather than regional
volume or other structural metrics. T1w contrast is the
sole input for most open-source brain analysis tools;
yet, an analysis engine could be optimized to extract
regions from each contrast/relaxation map separately.
An additional consideration is that synthetic weighted
contrast generation from quantitative maps, required
to run most analysis tools, is not straightforward, and
optimization of these methods is out of the scope of
this paper.

A linear regression lookup table approach was used
in lieu of direct Bloch simulation approaches because
accurate proton density maps were not immediately avail-
able from the online reconstruction process used in this
study. Direct substitution of M0 as proton density yielded
inconsistent contrasts versus ground truth MPRAGE,
resulting in the development of the proposed 2-to-1 lookup
table approach, which substantially improved robustness
of the automated registration and skull stripping pro-
cesses needed in this work and was therefore used in the
described limited capacity. The synthetic images gener-
ated with the regression network provided an MPRAGE-
and TSE-like contrast only for the registration purposes.
As illustrated in Figures 2 and 3, coupled with the same
anatomy and similar position between modalities, the
synthetic images had adequate tissue contrast to ensure
an accurate registration within a set. The reliability of
the resulting maps suggests that synthetic contrast gen-
eration based on MRF maps may allow for system- and
session-agnostic T1/T2 weighted contrasts with repro-
ducibility magnitudes exceeding the current clinical
standard. Future work will focus on creating better syn-
thetic weighted images, which could be used to compare
reproducibility at the structural volume or biomarker
level for MRF and conventional weighted imaging with
established community tools.

5 CONCLUSIONS

To improve traceability with minimal manual interven-
tions, we presented a fully automated data acquisition,
reconstruction, and analysis pipeline for 3D-MRF. Repro-
ducibility of quantitative MRF maps and qualitative
MPRAGE and TSE images were evaluated over sessions
and scanners by comparing mean values from MNI brain
atlas regions. The proposed MRF acquisition, recon-
struction, and analysis pipeline was found to be more
repeatable and reproducible than qualitative methods,
which should open the door to wider clinical adoption
and widespread use.
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Figure S1. Sequence flip angles for each of the 960 time-
points per partition used for the magnetic resonance fin-
gerprinting (MRF) acquisition. TR and TE were held con-
stant at 10.5 and 2.2 ms respectively. The flip angle was
smoothly varied in a pseudo sinusoidal pattern between
0 and 57 degrees. Forty-eight spiral interleaves were
acquired in a wrapping sequential pattern that repeats 20
times.
Figure S2. System architecture for the online
Kubernetes-based 3D-MRF Reconstruction. Data is sent
from the scanner to Azure via an SSH tunnel between the
scanner’s host and an SSH jump pod within the Kuber-
netes cluster. One or multiple GPU-enabled nodes then
share the load of storing temporary dependencies and
reconstructing datasets that arrive on the cluster. Logs are
stored to a persistant Prometheus appliance for debugging
and monitoring purposes.
Figure S3. Image quality for V01. Synthetic MPRAGE
and TSE images generated from MRF maps were used
as the input to the registration pipeline. Both synthetic
qualitative contrasts showed similar intraregional contrast
compared to the MPRAGE and TSE imaging acquired.
Figure S4. Image quality for V02.
Figure S5. Image quality for V03.
Figure S6. Image quality for V04.
Figure S7. Image quality for V05.
Figure S8. Image quality for V06.
Figure S9. Image quality for V07.
Figure S10. Image quality for V08.
Figure S11. Image quality for V09.
Figure S12. Image quality for V10.
Figure S13. Linear registration performance for V01. The
results of canny edge detection applied to the first scan-
ner’s original MPRAGE series projected over the first scan-
ner’s original T1 and TSE series and the second scanner’s
reposition MPRAGE, T1, and TSE series.
Figure S14. Linear registration performance for V02.
Figure S15. Linear registration performance for V03.
Figure S16. Linear registration performance for V04.
Figure S17. Linear registration performance for V05.
Figure S18. Linear registration performance for V06.
Figure S19. Linear registration performance for V07.
Figure S20. Linear registration performance for V08.
Figure S21. Linear registration performance for V09.
Figure S22. Linear registration performance for V10.
Figure S23. Atlas registration quality for V01. Atlas label
maps from Montreal Neurological Institute (MNI) space
were inversely warped and eroded to remove mislabeling

https://nipy.org/nibabel/
http://dx.doi.org/0
https://www.itl.nist.gov/div898/software/dataplot/refman2/homepage.htm
https://www.itl.nist.gov/div898/software/dataplot/refman2/homepage.htm
https://www.itl.nist.gov/div898/software/dataplot/refman2/homepage.htm
https://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
https://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
https://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
http://dx.doi.org/0
http://dx.doi.org/0
https://zenodo.org/records/8183344


DUPUIS et al. 15

artifacts introduced by nonlinear interpolation of integer
label values. The resulting atlas region overlays were col-
orized according to the legend used in the subsequent
Bland Altman plots.
Figure S24. Atlas registration quality for V02.
Figure S25. Atlas registration quality for V03.
Figure S26. Atlas registration quality for V04.
Figure S27. Atlas registration quality for V05.
Figure S28. Atlas registration quality for V06.
Figure S29. Atlas registration quality for V07.
Figure S30. Atlas registration quality for V08.
Figure S31. Atlas registration quality for V09.
Figure S32. Atlas registration quality for V10.

Data S1. Sequence parameters for the SSFP MRF acquisi-
tion used in this study. Repetition Time (TR), Echo Time

(TE), Flip Angle (FA), RF Phase (PH), and readout spiral
(ID) are specified for each of the 960 acquisition timepoints
in units of microseconds (TR, TE) and degrees (FA, PH).
ID refers to individual interleaves of the factor 48 under-
sampled spiral trajectory, with each ID referring to a spiral
arm rotated by ID * (360/48) degrees from the base spiral
arm shape (ID= 0).
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